Definition: we say two logical statements are logically equivalent when identical inputs give identical outputs.
Example: Show $\neg (p \vee q) \equiv \neg p \wedge \neg q$
p | q | $\neg (p \vee q)$ | $\neg p \wedge \neg q$ |
---|---|---|---|
T | T | F | F |
T | F | T | T |
F | T | T | T |
F | F | T | T |
$\therefore \neg (p \vee q) \equiv \neg p \wedge \neg q$ because they give the same output form the same input.
Also: $ p \rightarrow q \equiv q \vee \neg p $