Definition: Let $ n \in \mathbb{N} = \lbrace x_1, x_2, … x_i | x_i \in \mathbb{R} \text{ for each } i, 1 \leqq i \leqq n \rbrace $
The n-tuples $ ( x:_1, x_2, … x_n) \in \mathbb{R}^n $ are vectors
Examples:
$ \text{for } n = 2, ( x_1, x_2) \in \mathbb{R}^2 $ (2d vector)
$ \text{for } n = 3, ( x_1, x_2, x_3) \in \mathbb{R}^3 $ (3d vector)
Notation: $ \vec{x} = (x_1, x_2, … x_n) \in \mathbb{R}^n $
Definition: let $ \vec{v} = (v_1, v_2, … v_n) \in \mathbb{R}^n, \text{ } \vec{w} = (w_1, w_2, … w_n) \in \mathbb{R}^n $
$ \vec{v} + \vec{w} = (v_1 + w_1, v_2 + w_2, … v_n + w_n ) \in \mathbb{R}^n $
Propositions:
Definition: let $ c \in \mathbb{R} $
$ c\vec{v} = (cv_1, cv_2, … cv_n) \in \mathbb{n} $
Propositions