MATH 110 - Day 5

2024-09-12 14:39:50 -0400 EDT


Planes on $\mathbb{R}^3$

Let $ \vec{x} = (x,y,z)$ be any point on $\delta$
Let $ \vec{p} = (p_1,p_2,p_3)$ be a special point on $\delta$

Then $ \vec{x} - \vec{p} $ is a vector on $\delta$

Let $ \vec{n} = (a,b,c)$ is the normal vector to $\delta$
$ \vec{n} \cdot ( \vec{x} - \vec{p} ) = 0$
this is the normal form for $\delta$

Componentwise:
$ (a, b, c) \cdot (x, y, z) = (a, b, c) \cdot ( p_1, p_2, p_3 ) $
$ ax + by + cz = ap_1 + bp_2 + cp_3 = d $
This is the general form for $\delta$


A plane $\delta$ is generated by two vectors $ \vec{u}, \vec{v} \in \mathbb{R}^3$ then
$ \vec{x} = \vec{p} + s \vec{u} + t \vec{v}, s, t \in \mathbb{R}$

Componentwise:
$$ \left(\begin{array}{r} x, \\ y, \\ z \end{array}\right) = \left(\begin{array}{r} p_1, \\ p_2, \\ p_3 \end{array}\right) + s \left(\begin{array}{r} u_1, \\ u_2, \\ u_3 \end{array}\right) + t \left(\begin{array}{r} v_1, \\ v_2, \\ v_3 \end{array}\right) $$

This is the Parametric From

Example: find Vector form $\delta$ plane passing through $ P = (1, 1, 1), Q = (4, 0, 2), R = (0, 1, -1) $

Let $\vec{u} = P\vec{Q} = \vec{Q} - \vec{P} = (3, -1, 1) $
Let $\vec{u} = P\vec{R} = \vec{R} - \vec{P} = (-1, 0, -2) $
Let $\vec{u}$ and $\vec{v}$ be not parallel

Vector form for $\delta$ is $ \vec{x} = \vec{p} + s \vec{c} \vec + t \vec{v}$
$ = (1, 1, 1) + s(3, -1, 1) + t(-1, 0, -2), s, t \in \mathbb{R} $


Cross Product

Note: cross product is only defined in $\mathbb{R}^3$

Standard unit vectors:
$e_1 = (1, 0, 0)$
$e_2 = (0, 1, 0)$
$e_3 = (0, 0, 1)$

if $\vec{u} \in \mathbb{R}^3$ then it is a linear combination of unit vectors

Definition: the cross product of $\vec{u}$ and $\vec{v}$ is denoted by $ \vec{u} \times \vec{v}$

$$ \vec{u} \times \vec{v} = \left(\begin{array}{rr} \text{ Let } \left[\begin{array}{rr} u_2, u_3 \\ v_2, v_3 \end{array}\right] - \text{ Let } \left[\begin{array}{rr} u_3, u_1 \\ v_3, v_1 \end{array}\right] - \text{ Let } \left[\begin{array}{rr} u_1, u_2 \\ v_1, v_2 \end{array}\right] \end{array}\right) $$

where $ \left[\begin{array}{rr} a, b \\ c, d \end{array}\right] := ad - bc $

$\vec{u} \times \vec{v} = (u_2 v_3 - u_3 v_2) \vec{e_1} + (u_3 v_1 - u_1 v_3) \vec{e_2} + (u_1 v_2 - u_2 v_1) \vec{e_3}$

Note: $ \vec{u} \times \vec{v} = - \vec{v} \times \vec{u} $
Note: $ \vec{u} \times \vec{v} = 0$ if $\vec{v}$ and $\vec{u}$ are parallel

Proposition: $ ( \vec{u} \times \vec{v} ) \circ \vec{u} = 0 $

Proof: $ ( \vec{u} \times \vec{v}) \circ \vec{u} = (u_2 v_3 - u_3 v_2) \vec{u_1} - (u_3 v_1 - u_1 v_3) \vec{u_2} + (u_1 v_2 - u_2 v_1) \vec{u_3}$
$ \Rightarrow ( \vec{u} \times \vec{v}) \circ \vec{u} = u_1 u_2 v_3 - u_1 u_3 v_2 - u_2 u_3 v_1 + u_1 u_2 v_3 + u_1 u_3 v_2 - u_2 u_3 v_1$
$ \Rightarrow 0 $

$ \therefore ( \vec{u} \times \vec{v} ) \circ \vec{u} = 0 $

then length of $ \vec{u} \times \vec{v} $
$ || \vec{u} \times \vec{v} || = || \vec{u} || || \vec{v} || \sin \theta = $ area of the parallelogram

When you add vectors 2 or 3 dimensional geometry you can put them next to each other head to tail, from either vector, this makes no different but gives use 4 sides of a closed shape. This creates the parallelogram.