MATH 120 - Day 11

2024-10-14 19:47:27 -0400 EDT


Derivate of Inverse Trig Functions


$sin$

First we are going to restrict the domain of $sin$ to be monotone, $ [ - \frac{\pi}{2}, \frac{\pi}{2}]$; Let’s also call the inverse of $sin$, $arcsin$

$\therefore sin(arcsin(x)) = x, \text{ for } \in [-1, 1]$
$\therefore arcsin(sin(x)) = x, \text{ for } \in [- \frac{\pi}{2}, \frac{\pi}{2}]$

Derivative of $arcsin$? Use the inverse derivative!

$(arcsin)’(x) = \frac{1}{sin’(arcsin(x))} = \frac{1}{cos(arcsin(x))}$

Note: $\cos^2 x + \sin^2 x = 1 \Leftrightarrow \cos^2 \arcsin x + \sin^2 \arcsin x = 1 \Leftrightarrow$
$(\cos \arcsin x)^2 + x^2 = 1 \Leftrightarrow \cos \arcsin x = \sqrt{ 1 - x^2} \Leftrightarrow$

$\therefore \frac{1}{\cos \arcsin x} = \frac{1}{\sqrt{1 - x^2}}$

Conclusion: $\arcsin(x)$ is a differentiable (defined and continuos) on $[-1, 1]$ and $arcsin’(x) = \frac{1}{\sqrt{x^2 - 1}}$


$cos$

we are similarly going to restrict the domain to $[0, \pi]$

Let $ \cos^{-1} = \arccos$
$\therefore arccos(cos(x)) = x, \text{ for } \in [ 0 , \pi]$
$\therefore cos(arccos(x)) = x, \text{ for } \in [-1, 1]$

Derivative of $\arccos$

$(\arccos)’(x) = \frac{1}{\cos ’ (\arccos (x))} = \frac{1}{\cos ’ (\arccos (x))}$

Note: we can use our same logic before
*$\sin^2 (\arccos(x)) + \cos^2 (\arccos(x)) = 1 \Leftrightarrow (\sin (\arccos(x)))^2 + x^2 = 1$ \

$\frac{1}{\cos ’ (\arccos (x))} = \frac{1}{\sqrt{1 - x^2}}$

$\therefore (\arccos)’(x) = \frac{1}{\sqrt{1 - x^2}}$


$tan$

you get the story

we restrict it by $[ - \frac{\pi}{2}, \frac{\pi}{2}]$

we call it $\arctan$

we get the derivative: $ (\arctan)’(x) = \frac{1}{1 + x^2}$